These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tissue localization and biochemical characteristics of a new thymic antigen recognized by a monoclonal thymocytotoxic autoantibody from New Zealand black mice.
    Author: Bray KR, Gershwin ME, Ahmed A, Castles JJ.
    Journal: J Immunol; 1985 Jun; 134(6):4001-8. PubMed ID: 3921616.
    Abstract:
    Naturally occurring thymocytotoxic autoantibodies (NTA) have been described in both humans and mice with SLE. To define further the role of anti-thymic autoantibodies in murine lupus, we studied the cellular and molecular specificity of a spontaneous monoclonal NTA, designated TC-17, derived from a 4-mo-old New Zealand Black mouse. TC-17, an IgM autoantibody, has been shown previously to be unreactive with Lyt-1, Lyt-2, and L3T4 (T helper) antigens. We have shown further that it is also unreactive with Thy-1. TC-17 recognizes a new thymic antigen that appears to mark a distinct subpopulation of cortisol-sensitive cortical thymocytes. The antigen consists of a single glycoprotein chain with an apparent m.w. of 88,000. TC-17 shows reduced binding to thymocytes treated with tunicamycin, indicating either that glycosylation of TC-17 antigen is necessary for TC-17 to bind to it or that glycosylation is required for expression of the antigen on the cell surface. TC-17 uniquely reacts with two of 17 murine lymphoid tumor cell lines of intermediate cellular maturity. The thymocytotoxic activity of TC-17 is absorbed by single cell suspensions of murine stomach, small intestine, large intestine, kidney, and thymus. Moreover, the specific binding of TC-17 to gut tissue of normal and germfree mice can be demonstrated by indirect immunofluorescence, suggesting antigenic cross-reactions between thymic and gut tissue. TC-17 reacts with rat thymocytes as well as it does with murine cells, indicating moderate evolutionary conservation of the TC-17 antigen. The expression of this glycoprotein by a discrete thymocyte subset may prove to be a valuable probe for the study of murine T cell differentiation.
    [Abstract] [Full Text] [Related] [New Search]