These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhancing bone repair through improved angiogenesis and osteogenesis using mesoporous silica nanoparticle-loaded Konjac glucomannan-based interpenetrating network scaffolds. Author: Kanniyappan H, Sundaram MK, Ravikumar A, Chakraborty S, Gnanamani A, Mani U, Kumar N, Muthuvijayan V. Journal: Int J Biol Macromol; 2024 Nov; 279(Pt 2):135182. PubMed ID: 39216566. Abstract: We have fabricated and characterized novel bioactive nanocomposite interpenetrating polymer network (IPN) scaffolds to treat bone defects by loading mesoporous silica nanoparticles (MSNs) into blends of Konjac glucomannan, polyvinyl alcohol, and polycaprolactone. By loading MSNs, we developed a porous nanocomposite scaffold with mechanical strengths comparable to cancellous bone. In vitro cell culture studies proved the cytocompatibility of the nanocomposite scaffolds. RT-PCR studies confirmed that these scaffolds significantly upregulated major osteogenic markers. The in vivo chick chorioallantoic membrane (CAM) assay confirmed the proangiogenic activity of the nanocomposite IPN scaffolds. In vivo studies were performed using Wistar rats to evaluate the scaffolds' compatibility, osteogenic activity, and proangiogenic properties. Liver and renal function tests confirmed that these scaffolds were nontoxic. X-ray and μ-CT results show that the bone defects treated with the nanocomposite scaffolds healed at a much faster rate compared to the untreated control and those treated with IPN scaffolds. H&E and Masson's trichrome staining showed angiogenesis near the newly formed bone and the presence of early-stage connective tissues, fibroblasts, and osteoblasts in the defect region at 8 weeks after surgery. Hence, these advantageous physicochemical and biological properties confirm that the nanocomposite IPN scaffolds are ideal for treating bone defects.[Abstract] [Full Text] [Related] [New Search]