These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Elevated blood-ethanol concentration promotes reduction of aliphatic ketones (acetone and ethyl methyl ketone) to secondary alcohols along with slower oxidation to aliphatic diols. Author: Jones AW. Journal: Arch Toxicol; 2024 Dec; 98(12):4013-4019. PubMed ID: 39225796. Abstract: Many people convicted for drunken driving suffer from an alcohol use disorder and some traffic offenders consume denatured alcohol for intoxication purposes. Venous blood samples from people arrested for driving under the influence of alcohol were analyzed in triplicate by headspace gas chromatography (HS-GC) using three different stationary phases. The gas chromatograms from this analysis sometimes showed peaks with retention times corresponding to acetone, ethyl methyl ketone (2-butanone), 2-propanol, and 2-butanol in addition to ethanol and the internal standard (1-propanol). Further investigations showed that these drink-driving suspects had consumed an industrial alcohol (T-Red) for intoxication purposes, which contained > 90% w/v ethanol, acetone (~ 2% w/v), 2-butanone (~ 5% w/v) as well as Bitrex to impart a bitter taste. In n = 75 blood samples from drinkers of T-Red, median concentrations of ethanol, acetone, 2-butanone, 2-propanol and 2-butanol were 2050 mg/L (2.05 g/L), 97 mg/L, 48 mg/L, 26 mg/L and 20 mg/L, respectively. In a separate GC analysis, 2,3-butanediol (median concentration 87 mg/L) was identified in blood samples containing 2-butanone. When the redox state of the liver is shifted to a more reduced potential (excess NADH), which occurs during metabolism of ethanol, this favors the reduction of low molecular ketones into secondary alcohols via the alcohol dehydrogenase (ADH) pathway. Routine toxicological analysis of blood samples from apprehended drivers gave the opportunity to study metabolism of acetone and 2-butanone without having to administer these substances to human volunteers.[Abstract] [Full Text] [Related] [New Search]