These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Humoral and cellular immunity in response to an in silico-designed multi-epitope recombinant protein of Theileria annulata.
    Author: Abid A, Khalid A, Suleman M, Akbar H, Hafeez MA, Khan JA, Rashid MI.
    Journal: Front Immunol; 2024; 15():1400308. PubMed ID: 39234242.
    Abstract:
    Tropical theileriosis is a lymphoproliferative disease caused by Theileria annulata and is transmitted by Ixodid ticks of the genus Hyalomma. It causes significant losses in livestock, especially in exotic cattle. The existing methods for controlling it, chemotherapeutic agents and a vaccine based on an attenuated schizont stage parasite, have several limitations. A promising solution to control this disease is the use of molecular vaccines based on potential immunogenic proteins of T. annulata. For this purpose, we selected five antigenic sequences of T. annulata, i.e. SPAG-1, Tams, TaSP, spm2, and Ta9. These were subjected to epitope prediction for cytotoxic T lymphocytes, B-cells, and helper T lymphocytes. CTL and B-cell epitopes with a higher score whereas those of HTL with a lower score, were selected for the construct. A single protein was constructed using specific linkers and evaluated for high antigenicity and low allergenicity. The construct was acidic, hydrophobic, and thermostable in nature. Secondary and tertiary structures of this construct were drawn using the PSIPRED and RaptorX servers, respectively. A Ramachandran plot showed a high percentage of residues in this construct in favorable, allowed, and general regions. Molecular docking studies suggested that the complex was stable and our construct could potentially be a good candidate for immunization trials. Furthermore, we successfully cloned it into the pET-28a plasmid and transformed it into the BL21 strain. A restriction analysis was performed to confirm the transformation of our plasmid. After expression and purification, recombinant protein of 49 kDa was confirmed by western blotting. An ELISA detected increased specific antibody levels in the sera of the immunized animals compared with the control group, and flow cytometric analysis showed a stronger cell-mediated immune response. We believe our multi-epitope recombinant protein has the potential for the large-scale application for disease prevention globally in the bovine population. This study will act as a model for similar parasitic challenges.
    [Abstract] [Full Text] [Related] [New Search]