These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro responses of luteinizing rat granulosa cells to human thyroid-stimulating hormone. Author: Grasso P, Crisp TM. Journal: Biol Reprod; 1985 May; 32(4):935-45. PubMed ID: 3924135. Abstract: The effect of human thyroid-stimulating hormone (hTSH) on progesterone (P4) secretion during initial luteinization and subsequent prolactin (Prl)-mediated steroidogenesis by cultured rat granulosa cells was studied. Granulosa cells, obtained from pregnant mare's serum gonadotropin (PMSG)-treated immature female rats, were preincubated for 1, 3, 6, 12, or 24 h in control medium lacking added hormones or in medium containing 1.0 microgram/ml human chorionic gonadotropin (hCG) or hTSH, and maintained subsequently for 6 days in medium containing 1.0 microgram/ml bovine (bPrl). Indices of luteotropic stimulation were provided by: 1) elevated P4 concentrations determined by radioimmunoassay of spent media samples; and 2) cytoplasmic lipid accumulation assessed by osmium tetroxide staining following fixation after 7 days of culture. Progesterone levels in media from cultures exposed to hCG for 24 h were twofold higher than control cultures, whereas those in media from cultures preincubated in hTSH for 24 h were fourfold higher than control levels. Cultures preincubated in 1.0 microgram/ml hCG for as little as 1 h and then maintained for 6 days in Prl secreted significantly more P4 than did control cultures also maintained with Prl for 6 days. Cultures preincubated in hTSH required a 24-h exposure before a significant increase in Prl-mediated P4 secretion was observed. Intensity of cytoplasmic osmiophilia correlated directly with P4 concentration. These results suggest that: 1) hTSH has the ability to promote P4 secretion during initial luteinization and to regulate subsequent Prl-mediated steroidogenesis by cultured rat granulosa cells; and 2) the mechanism by which hTSH stimulates Prl-mediated P4 secretion in this model system may differ from that of hCG.[Abstract] [Full Text] [Related] [New Search]