These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of Mitoxantrone-Loaded Quercetin Nanoparticles for Breast Cancer Therapy with Potential for Synergism with Bioactive Natural Products. Author: Alkhaldi O, Abusulieh S, Abusara OH, Sunoqrot S. Journal: Int J Pharm; 2024 Nov 15; 665():124674. PubMed ID: 39245083. Abstract: Nanoparticle (NP)-based drug delivery systems have caused a paradigm shift in cancer treatment by enabling drug targeting, sustaining drug release, and reducing systemic toxicity of chemotherapy. Here we developed a novel NP formulation for the anticancer drug mitoxantrone (MTZ) by loading it into an emerging nanomaterial derived from the plant polyphenol quercetin (QCT). QCT was partially oxidized to produce amphiphilic oxQCT which was co-assembled with poly(ethylene glycol) (PEG) and MTZ by nanoprecipitation to form MTZ NPs. The optimal NPs exhibited an average diameter of 128 nm, a polydispersity index of 0.22, and a drug loading efficiency of 76%. While only a small fraction of the loaded drug was released at physiologic pH, a significantly higher fraction was released at acidic pH. The anticancer activity of MTZ NPs was assessed in MCF-7 and MDA-MB-231 breast cancer cell lines, alone and in combination with the bioactive natural products curcumin (CUR) and thymoquinone (TQ). In cell viability assays, MTZ NPs were slightly less potent than free MTZ, most likely due to their sustained release properties, but their cytotoxicity was greatly enhanced in the presence of TQ (in MCF-7 cells) as well as CUR (in MDA-MB-231 cells). The results were corroborated by apoptosis assays such as mitochondrial membrane potential measurement, acridine orange/ethidium bromide staining, in addition to caspase activity assays. The assays revealed that the NPs' proapoptotic effect was enhanced in the presence of CUR or TQ, depending on the cell line. Our work presents a promising nanocarrier platform for MTZ with the potential to enhance its bioactivity against breast cancer when combined with bioactive natural products.[Abstract] [Full Text] [Related] [New Search]