These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Studies on the characteristics of polycyclic aromatic hydrocarbons accumulation in lipids and the disturbance of lipid metabolism of Ruditapes philippinarum. Author: He Z, Pan L, Xu Q, Zhou Y, Li P, Li Z, Wang Q. Journal: Chemosphere; 2024 Sep; 364():143304. PubMed ID: 39251158. Abstract: Polycyclic aromatic hydrocarbons (PAHs) constitute a class of persistent organic pollutants with strong lipophilicity, which readily accumulate within organisms and have the effect to induce disorders in lipid metabolism. The present study aimed to investigate the accumulation localization and pattern of PAHs in Ruditapes philippinarum, and to reveal the association between PAHs and lipids metabolism. The 21-day exposure experiment was conducted using a mixture of phenanthrene, chrysene, and benzo[a]pyrene (the proportion is 1:1:1) at concentrations of 0.4 μg/L, 2 μg/L, and 10 μg/L. The tissue distribution of PAHs indicated that the digestive gland was the primary site of PAHs accumulation. Meanwhile, fluorescence colocalization suggested that PAHs primarily accumulated within the lipid droplets of digestive gland cells. This study further determined the transcriptomic and lipidomic profiles of the digestive gland to analyze the key genes involved in disrupted lipid metabolism and the major lipids affected. Lipidomic analysis identified the key differential metabolites as triglycerides (TGs). Furthermore, TGs were upregulated in the digestive gland had a total carbon atom number of 50-64 and a total number of 3-9 double bonds in the acyl side chains. Biochemical analysis experiments and oil red O stained frozen sections confirmed that the content of TGs steadily increased in various tissues during the experiment, leading to an elevated digestive gland index. Changes of lipid metabolism associated genes expression level also indicated that the synthesis of lipid in digestive gland were up-regulated while the decomposition was down-regulated. This study is the first to demonstrate the cellular localization of PAHs accumulation in bivalves and confirms the pattern of variation in TGs, providing new insights into the mechanisms of PAHs bioaccumulation and lipid metabolism disruption.[Abstract] [Full Text] [Related] [New Search]