These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A new parameter for quantitatively characterizing antibiotic hormesis: QSAR construction and joint toxic action judgment. Author: Sun H, Yao J, Long Z, Luo R, Wang J, Liu SS, Tang L, Wu M. Journal: J Hazard Mater; 2024 Nov 05; 479():135767. PubMed ID: 39255662. Abstract: Antibiotics usually induce the hormetic effects on bacteria, featured by low-dose stimulation and high-dose inhibition, which challenges the central belief in toxicity assessment and environmental risk assessment of antibiotics. However, there are currently no ideal parameters to quantitatively characterize hormesis. In this study, an effective area in hormesis (AH) was developed to quantify the biphasic dose-responses of single antibiotics (sulfonamides (SAs), sulfonamides potentiators (SAPs), and tetracyclines (TCs)) and binary mixtures (SAs-SAPs, SAs-TCs, and SAs-SAs) to the bioluminescence of Aliivibrio fischeri. Using Ebind (the lowest interaction energy between antibiotic and target protein) and Kow (octanol-water partition coefficient) as the structural descriptors, the reliable quantitative structure-activity relationship (QSAR) models were constructed for the AH values of test antibiotics and mixtures. Furthermore, a novel method based on AH was established to judge the joint toxic actions of binary antibiotics, which mainly exhibited synergism. The results also indicated that SAPs (or TCs) contributed more than SAs in the hormetic effects of antibiotic mixtures. This study proposes a new quantitative parameter for characterizing and predicting antibiotic hormesis, and considers hormesis as an integrated whole to reveal the combined effects of antibiotics, which will promote the development of risk evaluation for antibiotics and their mixtures.[Abstract] [Full Text] [Related] [New Search]