These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cordycepin alleviates diabetes mellitus-associated hepatic fibrosis by inhibiting SOX9-mediated Wnt/β-catenin signal axis.
    Author: Chen S, Suo J, Wang Y, Tang C, Ma B, Li J, Hou Y, Yan B, Shen T, Zhang Q, Ma B.
    Journal: Bioorg Chem; 2024 Dec; 153():107812. PubMed ID: 39260158.
    Abstract:
    Diabetes mellitus can induce liver injury and easily progress to liver fibrosis. However, there is still a lack of effective treatments for diabetes-induced hepatic fibrosis. Cordycepin (COR), a natural nucleoside derived from Cordyceps militaris, has demonstrated remarkable efficacy in treating metabolic diseases and providing hepatoprotective effects. However, its protective effect and underlying mechanism in diabetes-induced liver injury remain unclear. This study utilized a high-fat diet/streptozotocin-induced diabetic mouse model, as well as LX-2 and AML-12 cell models exposed to high glucose and TGF-β1, to explore the protective effects and mechanisms of Cordycepin in liver fibrosis associated with diabetes. The results showed that COR lowered blood glucose levels, enhanced liver function, mitigated fibrosis, and suppressed HSC activation in diabetic mice. Mechanistically, COR attenuated the activation of the Wnt/β-catenin pathway by inhibiting β-catenin nuclear translocation, and β-catenin knockdown further intensified this effect. Meanwhile, COR significantly inhibited SOX9 expression in vivo and in vitro. Knockdown of SOX9 downregulated Wnt3a and β-catenin expression at the protein and gene levels to exacerbate the inhibitory action of COR on HG&TGF-β1-induced HSCs activations. These results indicate SOX9 is involved in the mechanism by which COR deactivates the Wnt/β-catenin pathway in hepatic fibrosis induced by diabetes. Moreover, prolonged half-life time, slower metabolism and higher exposure of COR were observed in diabetes-induced liver injury animal model via pharmacokinetics studies. Altogether, COR holds potential as a therapeutic agent for ameliorating hepatic injury and fibrosis in diabetes by suppressing the activation of the SOX9-mediated Wnt/β-catenin pathway.
    [Abstract] [Full Text] [Related] [New Search]