These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: From e-waste to living space: Flame retardants contaminating household items add to concern about plastic recycling. Author: Liu M, Brandsma SH, Schreder E. Journal: Chemosphere; 2024 Oct; 365():143319. PubMed ID: 39271080. Abstract: Brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) are commonly used in electric and electronic products in high concentrations to prevent or retard fire. Health concerns related to flame retardants (FRs) include carcinogenicity, endocrine disruption, neurotoxicity, and reproductive and developmental toxicity. Globally, a lack of transparency related to chemicals in products and limited restrictions on use of FRs in electronics have led to widespread use and dissemination of harmful FRs. Despite the lack of transparency and restrictions, plastics from electronics are often recycled and can be incorporated in household items that do not require flame retardancy, resulting in potentially high and unnecessary exposure. This study sought to determine whether black plastic household products sold on the U.S. market contained emerging and phased-out FRs and whether polymer type was predictive of contamination. A total of 203 products were screened for bromine (Br), and products containing >50 ppm Br were analyzed for BFRs, OPFRs, and plastic polymers (e.g. acrylonitrile butadiene styrene, high impact polystyrene, polypropylene). FRs were found in 85% of analyzed products, with total FR concentrations ranging up to 22,800 mg/kg. FRs detected include the restricted compound deca-BDE, which was used widely in electronics casings, as well as its replacements decabromodiphenyl ethane (DBDPE) and 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TBPP-TAZ) along with associated compound 2,4,6-tribromophenol (2,4,6-TBP), recently detected in breast milk. Plastic typically used in electronics (styrene-based) contained significantly higher levels of ∑FRs than plastics less typically used for electronics (polypropylene and nylon). Estimation of exposure to BDE-209 from contaminated kitchen utensils indicated users would have a median intake of 34,700 ng/day, exceeding estimates for intake from dust and diet. The detection of FRs in collected household products indicates that recycling, without the necessary transparency and restrictions to ensure safety, is resulting in unexpected exposure to toxic flame retardants in household items.[Abstract] [Full Text] [Related] [New Search]