These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular identification of Shiitake (Lentinula edodes), analysis and production of beta-glucan using beech wood sawdust waste.
    Author: Reza MAS, Rasouli A, Vahidi H, Kobarfard F.
    Journal: Int J Biol Macromol; 2024 Sep 12; 280(Pt 1):135539. PubMed ID: 39276893.
    Abstract:
    Lentinula edodes has the ability to grow and produce bioactive compounds on industrial by-products. This study aimed to produce B-glucan of cell wall Shiitake on Beechwood Sawdust (BWS) through a two-step procedure, which included fermentation and B-glucan extraction and purification. Shiitake mushrooms are cultivated by solid-state fermentation (SSF) using the Jamas method to increase the purity of B-glucan. The fermented substrate was first separated and then hydrolyzed by sodium hydroxide (NaOH) (10 M, 1 M), followed by acid hydrolysis extraction. The structure and purity of B-glucan were confirmed by FTIR, NMR, and AFM spectroscopy. The fungus used was molecularly identified by the 18 s rRNA method. Shiitake mushroom was produced by SSF using BWS and high purity β-glucan was extracted from the produced polysaccharide in the amount of 67.33 mg/g. FTIR, NMR, and AFM analyses proved the production of beta-glucan, and based on molecular identification, it was determined that the mushroom used was Lentinula edodes. The results obtained show that SSF is a valuable technology for the production of biomass and polysaccharides by utilizing the strain of L. edodes. To the best of our knowledge, the yield reported is the highest by the strain of L. edodes using SSF.
    [Abstract] [Full Text] [Related] [New Search]