These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Co-encapsulation of borage seed oil and peppermint oil blends within ultrasound-assisted soy protein isolate/purity gum ultra complex nanoparticles: Fabrication, structural interaction mechanisms, and in vitro digestion studies.
    Author: Rehman A, Khalifa I, Rasheed HA, Iqbal MW, Shoaib M, Wang J, Zhao Y, Liang Q, Zhong M, Sun Y, Alsulami T, Ren X, Miao S.
    Journal: Food Chem; 2025 Jan 15; 463(Pt 2):141239. PubMed ID: 39278077.
    Abstract:
    This study aimed at co-encapsulating borage seed oil (BSO)- and peppermint oil (PO) blends in ultrasound-assisted complex nanoparticles stabilized by soy protein isolate (SPI) and purity gum ultra (PGU) in different ratios: SPI/PGU-1:0 (NP1), 0:1 (NP2), 1:1 (NP3), 1:3 (NP4), and 3:1 (NP5). The BSO- and PO-loaded SPI/PGU complex nanoparticles (BP-loaded SPNPs) coded as NP4 (SPI-PGU-1:3) revealed a zeta potential of -33.27 mV, a PDI of 0.14, and the highest encapsulation efficiency (81.38 %). The main interactions observed among SPI, PGU, BSO, PO, and a blend of BSO and PO, as determined by FTIR and molecular docking, involved hydrophobic effects, electrostatic attraction, and H-bonding. These interactions played crucial roles in the production of BP-loaded SPNPs. XRD results validated the alterations in the structure of BP-loaded SPNPs caused by varying proportions of SPI and PGU. The thermal capacity of BP-loaded SPNPs (NP4), as determined by TGA, exhibited the lowest amount of weight loss compared to other BP-loaded SPNPs. Morphological results revealed that NP4 and NP5 exhibited a spherical surface and two distinguishable layers, indicating successful coating of PGU onto the droplet surface. In addition, BP-loaded SPNPs (NP4) exhibited a higher antioxidant effect due to their improved progressive release and prolonged release of co-encapsulated BSO and PO during in vitro digestion. The comprehensive investigation of the co-encapsulation of BSO and PO in complex nanoparticles, dietary supplements, and double-layered emulsified systems provides valuable insights into the development of functional foods.
    [Abstract] [Full Text] [Related] [New Search]