These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular characterization of anopheline species diversity in the Andaman and Nicobar archipelago, with a particular emphasis on Anopheles barbirostris.
    Author: Pachalil VT, Gupta B, Maile A, Sunish IP.
    Journal: Parasitol Res; 2024 Sep 17; 123(9):325. PubMed ID: 39287819.
    Abstract:
    This study investigates anopheline species diversity in the Andaman and Nicobar Islands, employing morphological and molecular methods, focusing on the D3 domain of 28S rRNA (D3) and second internal spacer (ITS2). Ten Anopheline species were identified morphologically and confirmed with molecular markers. While the D3 region demonstrated low level of inter- and intra-specific genetic distance in all the species, ITS2 revealed clear barcoding gap. Among the ten species, A. barbirostris exhibited significant diversity when compared with the sequences from other countries available in GenBank. Further analyses of additional samples of A. barbirostris were carried out using ITS2 and cytochrome oxidase I (COI) markers. Limited variations among the sequences from the islands were observed, suggesting a prevalent single molecular form. However, when compared with the GenBank sequences, our samples formed a separate cluster closely related to the A3 species. The genetic distance between our samples and the A3 cluster was 0.02 for COI but very high (0.104) for ITS2, suggesting a potentially new molecular form or species in the island region. This warrants a more comprehensive and detailed analysis of A. barbirostris in these islands at both genetic and morphometric levels. Overall, these observations added-up the new knowledge in the understanding of anopheline diversity in the Andaman and Nicobar archipelago and highlight the necessity for continuous molecular investigations to unravel complexities within mosquito population dynamics.
    [Abstract] [Full Text] [Related] [New Search]