These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Single-cell transcriptomics reveals the cellular identity of a novel progenitor population crucial for murine neural tube closure.
    Author: Deng Z, Carpinelli MR, Butt T, Magor GW, Zhao P, Gillinder KR, Perkins AC, Jane SM.
    Journal: Heliyon; 2024 Sep 15; 10(17):e37259. PubMed ID: 39296075.
    Abstract:
    Neural tube closure in vertebrates is achieved through a highly dynamic and coordinated series of morphogenic events involving neuroepithelium, surface ectoderm, and neural plate border. Failure of this process in the caudal region causes spina bifida. Grainyhead-like 3 (GRHL3) is an indispensable transcription factor for neural tube closure as constitutive inactivation of the Grhl3 gene in mice leads to fully penetrant spina bifida. Here, through single-cell transcriptomics we show that at E8.5, the time-point preceding mouse neural tube closure, co-expression of Grhl3, Tfap2a, and Tfap2c defines a previously unrecognised progenitor population of surface ectoderm integral for neural tube closure. Deletion of Grhl3 expression in this cell population using a Tfap2a-Cre transgene recapitulates the spina bifida observed in Grhl3-null animals. Moreover, conditional inactivation of Tfap2c expression in Grhl3-expressing neural plate border cells also induces spina bifida. These findings indicate that a specific neural plate border cellular cohort is required for the early-stage neurulation.
    [Abstract] [Full Text] [Related] [New Search]