These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Engineering an Epoxide Hydrolase for Chemoenzymatic Asymmetric Synthesis of Chiral Triazole Fungicide (S)- and (R)-Flutriafol. Author: Hu D, Lu ZY, Liao X, Jia XW, Song WH, Hu YY, He YC. Journal: J Agric Food Chem; 2024 Oct 02; 72(39):21741-21751. PubMed ID: 39297229. Abstract: Flutriafol, a globally utilized triazole fungicide in agriculture, is typically applied as a racemic mixture, but its enantiomers differ in bioactivity and environmental impact. The synthesis of flutriafol enantiomers is critically dependent on chiral precursors: 2,2-bisaryl-substituted oxirane [(2-fluorophenyl)-2-(4-fluorophenyl)oxirane, 1a] and 1,2-diol [1-(2-fluorophenyl)-1-(4-fluorophenyl)ethane-1,2-diol, 1b]. Here, we engineered a Rhodotorula paludigensis epoxide hydrolase (RpEH), obtaining mutant Escherichia coli/RpehH336W/L360F with a 6.4-fold enhanced enantiomeric ratio (E) from 5.5 to 35.4. This enabled a gram-scale resolution of rac-1a by E. coli/RpehH336W/L360F, producing (S)-1a (98.2% ees) and (R)-1b (75.0% eep) with 44.3 and 55.7% analytical yields, respectively. As follows, chiral (S)-flutriafol (98.2% ee) and (R)-flutriafol (75.0% ee) were easily synthesized by a one-step chemocatalytic process from (S)-1a and a two-step chemocatalytic process from (R)-1b, respectively. This chemoenzymatic approach offers a superior alternative for the asymmetric synthesis of flutriafol enantiomers. Furthermore, molecular dynamics simulations revealed insight into the enantioselectivity improvement of RpEH toward bulky 2,2-bisaryl-substituted oxirane 1a.[Abstract] [Full Text] [Related] [New Search]