These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Performance analysis of pretrained convolutional neural network models for ophthalmological disease classification.
    Author: Emir B, Colak E.
    Journal: Arq Bras Oftalmol; 2023; 87(5):e20220124. PubMed ID: 39298728.
    Abstract:
    PURPOSE: This study aimed to evaluate the classification performance of pretrained convolutional neural network models or architectures using fundus image dataset containing eight disease labels. METHODS: A publicly available ocular disease intelligent recognition database has been used for the diagnosis of eight diseases. This ocular disease intelligent recognition database has a total of 10,000 fundus images from both eyes of 5,000 patients for the following eight diseases: healthy, diabetic retinopathy, glaucoma, cataract, age-related macular degeneration, hypertension, myopia, and others. Ocular disease classification performances were investigated by constructing three pretrained convolutional neural network architectures including VGG16, Inceptionv3, and ResNet50 models with adaptive moment optimizer. These models were implemented in Google Colab, which made the task straight-forward without spending hours installing the environment and supporting libraries. To evaluate the effectiveness of the models, the dataset was divided into 70%, 10%, and 20% for training, validation, and testing, respectively. For each classification, the training images were augmented to 10,000 fundus images. RESULTS: ResNet50 achieved an accuracy of 97.1%; sensitivity, 78.5%; specificity, 98.5%; and precision, 79.7%, and had the best area under the curve and final score to classify cataract (area under the curve = 0.964, final score = 0.903). By contrast, VGG16 achieved an accuracy of 96.2%; sensitivity, 56.9%; specificity, 99.2%; precision, 84.1%; area under the curve, 0.949; and final score, 0.857. CONCLUSIONS: These results demonstrate the ability of the pretrained convolutional neural network architectures to identify ophthalmological diseases from fundus images. ResNet50 can be a good architecture to solve problems in disease detection and classification of glaucoma, cataract, hypertension, and myopia; Inceptionv3 for age-related macular degeneration, and other disease; and VGG16 for normal and diabetic retinopathy.
    [Abstract] [Full Text] [Related] [New Search]