These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The role of the PI3K/AKT/mTOR pathway in mediating PD-L1 upregulation during fibroblast transdifferentiation. Author: Zhao Y, Qi Y, Xia J, Duan M, Hao C, Yao W. Journal: Int Immunopharmacol; 2024 Dec 05; 142(Pt B):113186. PubMed ID: 39298817. Abstract: Silicosis is a progressive interstitial lung disease characterized by diffuse pulmonary fibrosis. The transdifferentiation of lung fibroblasts into myofibroblasts is a key cellular event driving the progression of silicosis fibrosis. Recent studies have shown that PD-L1 expression is significantly upregulated in activated fibroblasts, and PD-L1 plays a crucial role in mediating fibroblast transdifferentiation. This study aims to elucidate the molecular mechanisms regulating PD-L1 expression in fibroblasts and analyze the functional significance of PD-L1 upregulation in fibroblast activity and silicosis fibrosis. In this research, an in vitro model of TGF-β1-induced NIH-3 T3 fibroblast transdifferentiation was established. Small molecule inhibitors, siRNA, and plasmids were used to interfere with the PI3K/AKT/mTOR signaling pathway and PD-L1 expression. It was found that TGF-β1 stimulation increased PD-L1 expression in fibroblasts, while blocking the PI3K/AKT/mTOR pathway inhibited this upregulation. Knockdown of PD-L1 significantly inhibited fibroblast transdifferentiation and impeded TGF-β1-induced activation of the PI3K/AKT/mTOR pathway, whereas PD-L1 overexpression had the opposite effect. Additionally, PD-L1 protein in fibroblasts undergoes ubiquitin-proteasome-mediated degradation, negatively regulating PD-L1 upregulation. In vivo, adeno-associated virus was used to specifically knockdown PD-L1 in mouse lung fibroblasts, resulting in significantly reduced lung tissue damage and fibrosis in silicosis mice. This effect was associated with the involvement of the PI3K/AKT/mTOR pathway. In summary, PD-L1 expression in fibroblasts is upregulated during transdifferentiation, a process regulated by the PI3K/AKT/mTOR pathway. Upregulated PD-L1 enhances PI3K/AKT/mTOR signaling through positive feedback, sustaining fibroblast activation. Ubiquitin-proteasome-mediated protein degradation may serve as a negative feedback mechanism maintaining PD-L1 homeostasis.[Abstract] [Full Text] [Related] [New Search]