These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sugar/sugar alcohol with glycerol as co-plasticizers for high-content starch/PBAT blown films: from fine structure to physicochemical properties.
    Author: Wu Y, Gao S, Zhao J, Kong S, Wang H, Wang W, Hou H.
    Journal: J Sci Food Agric; 2024 Sep 19; ():. PubMed ID: 39300042.
    Abstract:
    BACKGROUND: Glycerol is a well-known plasticizer for starch-based materials, but it easily migrates during starch retrogradation, thereby deteriorating the films' properties. We hypothesized that the performance of high-content starch/poly(butylene adipate-co-terephthalate) (PBAT) films could be enhanced by using sugar/sugar alcohol (glucose, sucrose and sorbitol) as natural, green and edible co-plasticizers with glycerol. RESULTS: The employment of co-plasticizers reduced the melt fluidity of the blends, established intermolecular hydrogen bonds with starch and resulted in a brittle film structure. The presence of sucrose contributed to the formation of more B-type starch crystals. Glucose and sucrose promoted the conversion of bound water to entrapped water, while sorbitol contributed to more bound water. The co-plasticizers enhanced films' thermal stability, moisture permeability (from 3.61 to 3.72 × 10-11 g m m-2 s-1 Pa-1), and oxygen barrier (from 12.84 to 8.74 × 10-13 cm3 cm cm-2 s-1 Pa-1). Glucose/glycerol co-plasticized film had the maximum tensile strength (10.12 MPa), and sucrose/glycerol co-plasticized film showed the highest Young's modulus (380.31 MPa). CONCLUSION: Sorbitol with linear structure and the lowest melting point exhibited a plasticizing capacity similar to glycerol. The molecular structure (linear or cyclic), hydroxyl group proportion and melting point of the sugar/sugar alcohol were the key factors to regulate the fine structure and properties of starch/PBAT films. © 2024 Society of Chemical Industry.
    [Abstract] [Full Text] [Related] [New Search]