These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation of an imidazolium-based poly(ionic liquid) functionalized magnetic three-dimensional graphene oxide for magnetic solid phase extraction of pyrethroids from tea samples.
    Author: Liu N, Xiao C, Duan W, Wang N, Cui B.
    Journal: J Chromatogr B Analyt Technol Biomed Life Sci; 2024 Oct 15; 1247():124321. PubMed ID: 39303518.
    Abstract:
    In this work, an imidazolium-based poly(ionic liquid) (poly(1-dodecyl-3-vinyl-imidazolium bromide) functionalized magnetic three-dimensional graphene oxide (Fe3O4@3D-GO@poly(ImC12+Br-)) was synthesized via a vacuum freezing-drying method and used as a magnetic solid phase extraction (MSPE) adsorbent for the efficient extraction of pyrethroid pesticides from tea samples. The prepared Fe3O4@3D-GO@poly(ImC12+Br-) was confirmed by scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR), vibrating sample magnetometer (VSM) and X-ray photoelectron spectrogram (XPS). Due to its large specific surface area and the ability to offer multiple intermolecular interactions, including π-π stacking, hydrophobic and hydrogen bond interactions, the prepared Fe3O4@3D-GO@poly(ImC12+Br-) showed high extraction efficiency for pyrethroids. The experimental parameters were optimized by a combination of single-factor method and Box-Behnken design to improve the extraction efficiency. Under the optimum conditions, coupled with high performance liquid chromatography (HPLC), a sensitive analytical method was developed for the determination of pyrethroids, and the proposed method showed wide linear ranges (1.00-100 μg L-1) with correlation coefficients (R) ranging from 0.9980 to 0.9994, low limits of detection (0.100 μg L-1) and good repeatability with intra-day relative standard deviations (RSDs) in the range of 2.90-5.53 % and inter-day RSDs in the range of 1.83-7.76 %. Moreover, the developed method was successfully applied to the determination of pyrethroids in tea samples and satisfactory recoveries ranging from 82.37 % to 114.34 % were obtained. The results showed that the developed Fe3O4@3D-GO@poly(ImC12+Br-) was an ideal, effective and selective material for the extraction and enrichment of pyrethroids from tea samples.
    [Abstract] [Full Text] [Related] [New Search]