These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Optimization of PET depolymerization for enhanced terephthalic acid recovery from commercial PET and post consumer PET-bottles via low-temperature alkaline hydrolysis.
    Author: Teke S, Saud S, Bhattarai RM, Ali A, Nguyen L, Denra A, Nguyen DB, Mok YS.
    Journal: Chemosphere; 2024 Oct; 365():143391. PubMed ID: 39307467.
    Abstract:
    The increasing demand for plastic has resulted in a surge in plastic waste production. Polyethylene terephthalate (PET), commonly used in beverage bottle manufacturing, is only partially recycled, with an estimated recycling rate of just 28.4% in 2019. This accumulation of plastic waste is harmful to the environment and living organisms, necessitating effective recycling methods for PET waste. One promising method is alkaline hydrolysis using NaOH, which can break down PET into its monomer components, terephthalic acid (TPA) and ethylene glycol (EG). This process not only recycles PET efficiently but also manages contaminants effectively, producing high-quality TPA, supporting the development of a circular economy. This study looks into PET depolymerization via alkaline hydrolysis at low temperature by investigating effects of various factors: pH levels, water to ethanol ratio, NaOH concentration, NaOH to PET ratio, reaction time, PET size, reusability of unreacted PET, air plasma pretreatment of PET, and different kinds of PET. Promisingly, PET conversion rates of over 90% and a TPA purity of 99.6% were achieved in this study highlighting the efficacy of alkaline hydrolysis in depolymerizing post-consumer PET waste. Ultimately, this research advances sustainable plastic waste management and supports the integration of PET into a circular economy framework.
    [Abstract] [Full Text] [Related] [New Search]