These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fermented Fish Collagen Attenuates Melanogenesis via Decreasing UV-Induced Oxidative Stress.
    Author: Byun KA, Lee SY, Oh S, Batsukh S, Jang JW, Lee BJ, Rheu KM, Li S, Jeong MS, Son KH, Byun K.
    Journal: Mar Drugs; 2024 Sep 15; 22(9):. PubMed ID: 39330302.
    Abstract:
    Excessive melanogenesis leads to hyperpigmentation-related cosmetic problems. UV exposure increases oxidative stress, which promotes melanogenesis-related signal pathways such as the PKA, microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2) pathways. Glycine is a source of endogenous antioxidants, including glutathione. Fermented fish collagen (FC) contains glycine; thus, we evaluated the effect of FC on decreasing melanogenesis via decreasing oxidative stress. The glycine receptor (GlyR) and glycine transporter-1 (GlyT1) levels were decreased in UV-irradiated keratinocytes; however, the expression levels of these proteins increased upon treatment with FC. The FC decreased oxidative stress, as indicated by the decreasing expression of NOX1/2/4, increased expression of GSH/GSSG, increased SOD activity, and decreased 8-OHdG expression in UV-irradiated keratinocytes. Administration of conditioned media from FC-treated keratinocytes to melanocytes led to decreased p38, PKC, MITF, TRP1, and TRP2 expression. These changes induced by the FC were also observed in UV-irradiated animal skin. FC treatment increased the expression of GlyR and GlyT, which was accompanied by decreased oxidative stress in the UV-irradiated skin. Moreover, the FC negatively regulated the melanogenesis signaling pathways, leading to decreased melanin content in the UV-irradiated skin. In conclusion, FC decreased UV-induced oxidative stress and melanogenesis in melanocytes and animal skin. FC could be used in the treatment of UV-induced hyperpigmentation problems.
    [Abstract] [Full Text] [Related] [New Search]