These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Meron-Mediated Phase Transitions in Quasi-Two-Dimensional Chiral Magnets with Easy-Plane Anisotropy: Successive Transformation of the Hexagonal Skyrmion Lattice into the Square Lattice and into the Tilted FM State. Author: Leonov AO. Journal: Nanomaterials (Basel); 2024 Sep 20; 14(18):. PubMed ID: 39330681. Abstract: I revisit the well-known structural transition between hexagonal and square skyrmion lattices and subsequent first-order phase transition into the tilted ferromagnetic state as induced by the increasing easy-plane anisotropy in quasi-two-dimensional chiral magnets. I show that the hexagonal skyrmion order first transforms into a rhombic skyrmion lattice, which, adjusts into a perfect square arrangement of skyrmions ("a square meron-antimeron crystal") within a narrow range of anisotropy values. These transitions are mediated by merons and anti-merons emerging in the boundaries between skyrmion cells; energetically unfavorable anti-merons annihilate, whereas pairs of neighboring merons merge. The tilted ferromagnetic state sets in via mutual annihilation of oppositely charged merons; as an outcome, it contains bimeron clusters (chains) with the attracting inter-soliton potential. Additionally, I demonstrate that domain-wall merons are actively involved in the dynamic response of the square skyrmion lattices. As an example, I theoretically study spin-wave modes and their excitations by AC magnetic fields. Two found resonance peaks are the result of the complex dynamics of the domain-wall merons; whereas in the high-frequency mode the merons rotate counterclockwise, as one might expect, in the low-frequency mode merons are instead created and annihilated consistently with the rotational motion of the domain boundaries.[Abstract] [Full Text] [Related] [New Search]