These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: VAE-WACGAN: An Improved Data Augmentation Method Based on VAEGAN for Intrusion Detection. Author: Tian W, Shen Y, Guo N, Yuan J, Yang Y. Journal: Sensors (Basel); 2024 Sep 18; 24(18):. PubMed ID: 39338780. Abstract: To address the class imbalance issue in network intrusion detection, which degrades performance of intrusion detection models, this paper proposes a novel generative model called VAE-WACGAN to generate minority class samples and balance the dataset. This model extends the Variational Autoencoder Generative Adversarial Network (VAEGAN) by integrating key features from the Auxiliary Classifier Generative Adversarial Network (ACGAN) and the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP). These enhancements significantly improve both the quality of generated samples and the stability of the training process. By utilizing the VAE-WACGAN model to oversample anomalous data, more realistic synthetic anomalies that closely mirror the actual network traffic distribution can be generated. This approach effectively balances the network traffic dataset and enhances the overall performance of the intrusion detection model. Experimental validation was conducted using two widely utilized intrusion detection datasets, UNSW-NB15 and CIC-IDS2017. The results demonstrate that the VAE-WACGAN method effectively enhances the performance metrics of the intrusion detection model. Furthermore, the VAE-WACGAN-based intrusion detection approach surpasses several other advanced methods, underscoring its effectiveness in tackling network security challenges.[Abstract] [Full Text] [Related] [New Search]