These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Combined Aerobic Exercise Training and Chlorella Intake Reduces Arterial Stiffness through Enhanced Arterial Nitric Oxide Production in Obese Rats.
    Author: Yamazaki H, Fujie S, Inoue K, Uchida M, Iemitsu M.
    Journal: Nutrients; 2024 Sep 13; 16(18):. PubMed ID: 39339680.
    Abstract:
    This study aimed to assess the effect of a combination of aerobic exercise training (ET) and Chlorella (CH) intake on arterial nitric oxide (NO) production and arterial stiffness in obese rats. Twenty-week-old obese male rats were randomly grouped into four (n = 6): OBESE-SED (sedentary control), OBESE-ET (treadmill 25 m/min, 1 h, 5 d/week), OBESE-CH (0.5% Chlorella powder in normal diet), and OBESE-ET+CH (combination of ET and CH intake) groups. The carotid-femoral pulse wave velocity (cfPWV), an index of arterial stiffness, was significantly lesser in the OBESE-ET, OBESE-CH, and OBESE-ET+CH groups than in the OBESE-SED group, and in the OBESE-ET+CH group significantly further enhanced these effects compared with the OBESE-ET and OBESE-CH groups. Additionally, arterial nitrate/nitrite (NOx) levels were significantly greater in the OBESE-ET, OBESE-CH, and OBESE-ET+CH groups than in the OBESE-SED group, and the OBESE-ET+CH group compared with the OBESE-ET and OBESE-CH groups. Furthermore, arterial NOx levels were positively correlated with arterial endothelial NO synthase phosphorylation levels (r = 0.489, p < 0.05) and negatively correlated with cfPWV (r = -0.568, p < 0.05). In conclusion, a combination of ET and CH intake may reduce arterial stiffness via an enhancement of the arterial NO signaling pathway in obese rats.
    [Abstract] [Full Text] [Related] [New Search]