These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Membrane tension sensing formin-binding protein 1 is a neuronal nutrient stress-responsive Golgiphagy receptor. Author: Saha S, Mandal A, Ranjan A, Ghosh DK. Journal: Metabolism; 2025 Jan; 162():156040. PubMed ID: 39341273. Abstract: BACKGROUND: Nutrient stress-responsive neuronal homeostasis relies on intricate autophagic mechanisms that modulate various organelle integrity and function. The selective autophagy of the Golgi, known as Golgiphagy, regulates secretory processes by modulating vesicle trafficking during nutrient starvation. RESULTS: In this study, we explored a genetic screen of BAR-domain-containing proteins to elucidate the role of formin-binding protein 1 (FNBP1) as a Golgiphagy receptor in modulating Golgi dynamics in response to varying nutrient availability in neurons. Mapping the systems network of FNBP1 and its interacting proteins reveals the putative involvement of FNBP1 in autophagy and Golgi-associated processes. While nutrient depletion causes Golgi fragmentation, FNBP1 preferentially localizes to the fragmented Golgi membrane through its 284FEDYTQ289 motif during nutrient stress. Simultaneously, FNBP1 engages in molecular interactions with LC3B through a conserved 131WKQL134 LC3 interacting region, thereby sequestering the fragmented Golgi membrane in neuronal autophagosomes. Increased aggregation of GM130, abnormal clumping of RAB11-positive secretory granules, and enhanced senescent death of FNBP1-depleted starved neurons indicate disruptions of neuronal homeostasis under metabolic stress. CONCLUSION: The identification of FNBP1 as a nutrient stress-responsive Golgiphagy receptor expands our insights into the molecular mechanisms underlying Golgiphagy, establishing the crosstalk between nutrient sensing and membrane tension-sensing regulatory autophagic processes of Golgi turnover in neurons.[Abstract] [Full Text] [Related] [New Search]