These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Comparison of the Quality of the Most Commonly Used New UHMWPE Articulation Inserts of the Total Knee Replacement]. Author: Pokorný D, Šlouf M, Gajdošová V, Šeděnková I, Vyroubalová M, Němec K, Fulín P. Journal: Acta Chir Orthop Traumatol Cech; 2024; 91(4):207-216. PubMed ID: 39342641. Abstract: PURPOSE OF STUDY: Total joint replacements (TJR) have become the cornerstone of modern orthopedic surgery. A great majority of TJR employs ultrahigh molecular weight polyethylene (UHMWPE) liners. TJR manufacturers use many different types of UHMWPE, which are modified by various combinations of crosslinking, thermal treatment, sterilization and/or addition of biocompatible stabilizers. The UHMWPE modifications are expected to improve the polymer's resistance to oxidative degradation and wear (release of microparticles from the polymer surface). This manuscript provides an objective, non-commercial comparison of current UHMWPE formulations currently employed in total knee replacements. MATERIALS AND METHODS: UHMWPE liners from 21 total knee replacements (TKR) were collected which represent the most implanted liners in the Czech Republic in the period 2020-2021. The UHMWPEs were characterized using several methods: infrared microspectroscopy (IR), non-instrumented and instrumented microindentation hardness testing (MH and MHI), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and solubility measurements. The above-listed methods yielded quite complete information about the structure and properties of each UHMWPE type, including its potential long-term oxidation resistance. RESULTS: For each UHMWPE liner, IR yielded information about immediate oxidative degradation (in the form of oxidation index, OI), level of crosslinking (trans-vinylene index, VI) and crystallinity (CI). The MH and MHI testing gave information about the impact of structure changes on mechanical properties. The remaining methods (DSC, TGA, and solubility measurements) provided additional information regarding the structure changes and resistance to long-term oxidative degradation. Statistical evaluation showed significant differences among the samples as well as interesting correlations among the UHMWPE modifications, structural changes, and mechanical performance. DISCUSSION: Surprisingly enough, UHMWPE materials from different manufacturers showed quite different properties, including the resistance against the long-term oxidative degradation, which is regarded as one of the main reasons of TJR failures. The most promising UHMWPE types were crosslinked materials with biocompatible stabilizers. CONCLUSIONS: Current UHMWPE liners from different manufactures used in total knee replacements exhibit significantly different structure and properties. From the point of view of clinical practice, the traditional UHMWPE types, which contained residual radicals from irradiation and/or gamma sterilization, showed inferior resistance to oxidative degradation and should be avoided. The best properties were observed in modern UHMWPE types, which combined crosslinking, biocompatible stabilizers, and sterilization by ethylenoxide or gas plasma. KEY WORDS: UHMWPE; knee replacements; oxidative degradation; infrared spectroscopy; microhardness.[Abstract] [Full Text] [Related] [New Search]