These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Immunogenicity of Brucella Trivalent Immunogen-Containing Polyethyleneimine Nanostructure Targeted with LPS in a Mouse Model.
    Author: Iranikhah M, Nazari R, Fasihi-Ramandi M, Taheri RA, Zargar M.
    Journal: Curr Microbiol; 2024 Sep 29; 81(11):383. PubMed ID: 39343859.
    Abstract:
    Brucella is a facultative intracellular gram-negative coccobacillus. It is nonsporulating and reproduced in macrophage phagosomes. The use of nanostructures as drug and vaccine carriers has recently received attention due to their ability to control the release profile and protect the drug molecules. This study presents a suitable nano-polyethyleneimine formulation to be used as an immunoadjuvant and LPS along with trivalent candidate antigens of TF, BP26, and omp31 to selectively stimulate the immune response. After designing and evaluating the immunogenic structure by databases and bioinformatics software, recombinant protein cloning and gene expression were performed in Escherichia coli BL21 bacteria. This protein was extracted from the cultured cells, purified by Ni-NTA column. After placing the antigen inside the polyethyleneimine nanostructure, various properties of the nanoparticles, including their size, zeta potential, and retention rate for injection and inhalation of mice, diffusion efficacy, and antigen binding evaluation were evaluated. Mice were treated with different groups of antigens and nanoparticles on days 0, 10, 24, and 38. Two weeks after the last injection, the level of cytokines were investigated in spleen cells, including IFN-γ, IL-4, and IL-12. The serum concentration of IgG2a and IgG1 antibodies were also assessed. The response was consistent with significant production of IgG1, IgG2a, IFN-γ21, IL-12, and IL-4 compared to the controls (P < 0.05). Compared to the positive and negative control groups, recombinant protein and nanoparticles showed a good response in subsequent injections with live bacterial strains. The present study also revealed the potential of the developed recombinant protein as a candidate in the design and manufacture of subunit vaccines against Brucella species. This protein stimulates cellular and humoral immune responses compared to the positive control groups. These findings can be useful in the prevention and control of brucellosis and pave the way for further research by researchers around the world.
    [Abstract] [Full Text] [Related] [New Search]