These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis, intracellular processing and secretion of thrombospondin in human endothelial cells.
    Author: Vischer P, Beeck H, Voss B.
    Journal: Eur J Biochem; 1985 Dec 16; 153(3):435-43. PubMed ID: 3935437.
    Abstract:
    The biosynthesis of thrombospondin, a glycoprotein first described in platelets, has been studied in human endothelial cells. This glycoprotein has a molecular mass of 450 kDa. It is secreted and incorporated into the extracellular matrix of several cell types in culture. Pulse-chase experiments with [3H]leucine were performed and the synthesis and secretion of the glycoprotein was studied by immunoprecipitation and sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The results of these experiments show that the three subunits of thrombospondin are identical in molecular mass. During synthesis there is a small but significant increase in molecular mass within 20 min after pulse labeling. The early form of thrombospondin is sensitive to endoglucosaminidase H treatment, indicating that a transformation of the oligosaccharide structures from 'high-mannose' to 'complex' structures takes place. Within 60 min after synthesis only the mature form of the glycoprotein is secreted into the medium. In the presence of tunicamycin, an inhibitor of N-glycosylation, there is a reduction in molecular mass of the subunit from 165 kDa to 155 kDa. Pulse-chase experiments in the presence of tunicamycin supported the conclusion that the carbohydrate part is processed during biosynthesis. Inhibition of glycosylation had a pronounced effect on the secretion of thrombospondin. The decreased occurrence of thrombospondin in the culture medium seemed to be due to a high intracellular degradation rate of unglycosylated thrombospondin. Characterization of the glycopeptide structures of thrombospondin metabolically labeled with [3H]mannose by Bio-Gel P-4 and concanavalin-A-Sepharose column chromatography revealed that the oligosaccharide structures of the cellular and secreted forms of thrombospondin differ in their composition.
    [Abstract] [Full Text] [Related] [New Search]