These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The value of tissue quantitative diffusion analysis of ultrasound elastography in the diagnosis of early-stage chronic kidney disease. Author: Zhang DL, Chen S, Xu JM, Na-Lin, Wu HY, Zhou JM, Chen ZP, Huang XR, Wei LX, Liu DX. Journal: BMC Nephrol; 2024 Oct 01; 25(1):328. PubMed ID: 39354395. Abstract: PURPOSE: To explore the value of tissue quantitative diffusion analysis of ultrasound elastography in the diagnosis of early-stage chronic kidney disease (CKD). METHODS: The observation group comprised 54 patients with early-stage CKD treated at Fuzhou No 7 Hospital, and the control group consisted of 40 healthy individuals who underwent physical examinations at the same hospital. The renal parenchyma of the participants were examined using ultrasonography, color Doppler ultrasonography, and tissue quantitative diffusion analysis of ultrasound elastography. Renal dimensions (diameter, thickness, and renal parenchyma thickness), interlobar artery blood flow parameters, and 11 elastic characteristic values were analyzed and compared between the two groups. The area under the receiver-operating characteristic (ROC) curve, cut-off values, sensitivity, and specificity were calculated using the ROC curve analysis. RESULTS: There were no significant differences in the blood flow parameters of the interlobar artery and the dimensions of renal meridians between the two groups. In the observation group, the mean (MEAN) decreased, while the blue area ratio and skewness, increased, compared to the control group (p < 0.05). In addition, the ROC curve revealed that the blue area ratio, MEAN, and skewness had significant diagnostic value (the area under the curve > 0.7). Notably, the best cut-off value of the MEAN was found to be 106, indicating that a MEAN value less than 106 represented early-stage CKD. Also, this cutoff value had a sensitivity of 80% and a specificity of 81%. CONCLUSION: Tissue quantitative diffusion analysis of ultrasound elastography can quantitatively evaluate renal parenchymal damage in early-stage CKD using quantitative diffusion parameters, with the MEAN parameter, having a cutoff of 106, being particularly effective. This parameter and cutoff value offer a valuable tool for the early detection and diagnosis of CKD, potentially improving patient outcomes through earlier intervention. CLINICAL TRIAL NUMBER: Not applicable.[Abstract] [Full Text] [Related] [New Search]