These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular Recognition Properties of Nicotinic Ligands Determining Selectivity Between Insect and Mammalian Receptors. Author: Terajima T, Matsumoto Y, Uehara K, Shimomura K, Tomizawa M. Journal: J Agric Food Chem; 2024 Oct 03; ():. PubMed ID: 39361838. Abstract: This investigation defines the roles of various amino acids, neighboring key conserved amino acids in loops C and D of the nicotinic acetylcholine (ACh) receptor (nAChR), in the selective molecular recognition of nicotinic ligands with diverse pharmacophores using Aplysia californica ACh binding protein Y55W (Ac-AChBP) mutants (+Q57R; + Q57R+S189 V; + Q57R+S189E; + Q57T; + Q57T+S189 V; + Q57T+S189E) and Lymnaea stagnalis AChBP (Ls-AChBP) mutants (Q55T; Q55T+S186E; Q55R) as insect and mammalian nAChR structural surrogates, respectively. N-nitro/cyanoimine insecticides show high affinity to four Ac-AChBPs containing Arg57 or Thr57 and Ser189 or Val189, except for those with Glu189. Pyrazinoyl compound selectively interacts with the three Ac-AChBPs containing Arg57 and Ser189, Val189, or Glu189. Cationic ligands prefer three Ac-AChBPs with Thr57 and Ser189, Val189, or Glu189 and two Ls-AChBPs providing Thr55 ± Glu186 over the four Ac- and Ls-AChBPs with Arg57/55. Accordingly, loop C contributes to N-nitro/cyanoimine insecticide action, and loop D controls the affinity of the pyrazinoyl or cationic ligand.[Abstract] [Full Text] [Related] [New Search]