These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Soil carbon pools and microbial network stability depletion associated with wetland conversion into aquaculture ponds in Southeast China. Author: Hou N, Zeng Q, Wang W, Zheng Y, Sardans J, Xue K, Zeng F, Tariq A, Peñuelas J. Journal: Sci Total Environ; 2024 Dec 01; 954():176492. PubMed ID: 39362542. Abstract: Wetlands, which are ecosystems with the highest soil surface carbon density, have been severely degraded and replaced by artificial reclamation for fish and shrimp ponds in recent years. This transformation is causing intricate shifts in soil carbon pools and microbial stability. In this study, we examined natural wetlands and reclaimed aquaculture ponds in Southeast China to analyze the structure and network stability of soil microbial communities following the reclamation of estuarine wetlands and to elucidate the microbial-mediated mechanisms for regulating soil organic carbon (SOC). The aquaculture ponds presented significantly less average SOC content than the natural wetlands (p < 0.05). ACE, Chao1, and Shannon's indices of bacteria and fungi were decreased in aquaculture ponds. Less numbers of nodes and edge links in the co-occurrence network of soil fungi and bacteria in aquaculture ponds. This suggests reduced correlation and stability within the microbial network of aquaculture ponds. Decomposers in soil fungi (e.g. Dung Saprotroph) reduced. Reduced proportions of key phyla Ascomycota, Basidiomycota and Rozellomycota in the soil fungal network. Reduced proportions of key phyla Proteobacteria, Chloroflexi and Desulfobacterota in the soil bacterial network. In conclusion, our results suggest that converting wetland paddocks to intensive aquaculture ponds results in carbon pool loss and reduces soil microbial network stability. The results highlight the importance of protecting or moderately restoring mangrove wetlands along the coast of southeastern China. It is also predicted that such measures may enhance the storage capacity of soil carbon pools and improve the stability of carbon sequestration by soil microorganisms, thus offering a potential solution for mitigating global climate change.[Abstract] [Full Text] [Related] [New Search]