These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tetrapleura tetraptera fruit phenolics fraction protects against the impact of ischemic stroke-induced hippocampal distortions and memory deficits in Wistar rats. Author: Onimisi OB, Musa SA, Umana UE, Sambo SJ, Makena W. Journal: Anat Cell Biol; 2024 Dec 31; 57(4):543-558. PubMed ID: 39363566. Abstract: Stroke is the most significant cause of disability worldwide. Despite mounting data supporting memory deficit after stroke, dysfunction and treatment effect mechanisms remain unknown. Phenolics can be found in a variety of fruits and vegetables. There is, however, a scarcity of research on the therapeutic potential of the phenolics fraction of Tetrapleura tetraptera (PTT) fruit against ischemic stroke-induced abnormalities in hippocampal tissue. The rats were divided into five groups: Group I, vehicle; group II, ischemia/reperfusion (I/R)+vehicle; group III, I/R+50 mg/kg minocycline (MNC); group IV, I/R+100 mg/kg PTT; and group V, I/R+200 mg/kg PTT. Ischemia was induced via bilateral common carotid artery occlusion for 30 minutes followed by reperfusion. PTT and MNC were intraorally administered daily for 7 days. Neurodegenerative changes, cornu ammonis 1 (CA1) and cornu ammonis 3 (CA3) pyramidal cell count, levels of oxidative stress indicators, and memory functions were assessed. Rats treated with PTT, as well as MNC compared to untreated I/R rats, showed a substantial (P<0.05) rise in catalase, superoxide dismutase, glutathione levels, as well as decreased lipid peroxidation and improved memory. I/R resulted in histoarchitectural distortions, a marked decrease (P<0.05) in the intensity of the Nissl substance, and a striking decrease (P<0.05) in the number of pyramidal cells in the CA1 and CA3. PTT and MNC-treated groups showed significant attenuation in all the above parameters. Taking together, these findings revealed that PTT attenuated oxidative stress, histologic alterations and substantially restored memory impairment in the I/R rat model.[Abstract] [Full Text] [Related] [New Search]