These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanism of inhibitory action of TMB-8 [8-(NN-diethylamino)octyl-3,4,5-trimethoxybenzoate] on aldosterone secretion in adrenal glomerulosa cells. Author: Kojima I, Kojima K, Rasmussen H. Journal: Biochem J; 1985 Nov 15; 232(1):87-92. PubMed ID: 3936488. Abstract: The mechanism of 8-(NN-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) action was evaluated in isolated adrenal glomerulosa cells. TMB-8 inhibits both angiotensin II- and K+-stimulated aldosterone secretion in a dose-dependent manner. The ID50 for angiotensin II- and K+-stimulated aldosterone secretion is 46 and 28 microM, respectively. In spite of the fact that 100 microM-TMB-8 inhibits angiotensin II-stimulated aldosterone secretion almost completely, TMB-8 (100 microM) does not inhibit angiotensin II-induced 45Ca2+ efflux from prelabelled cells nor does it affect inositol 1,4,5-trisphosphate-induced calcium release from non-mitochondrial pool(s) in saponin-permeabilized cells. TMB-8 has no inhibitory effect on A23187-induced aldosterone secretion, but 12-O-tetradecanoylphorbol 13-acetate-induced aldosterone secretion is completely abolished. TMB-8 effectively inhibits both angiotensin II- and K+-induced increases in calcium influx but has no effect on A23187-induced calcium influx. TMB-8 inhibits the activity of protein kinase C dose-dependently. These results indicate that TMB-8 inhibits aldosterone secretion without inhibiting mobilization of calcium from an intracellular pool. The inhibitory effect of TMB-8 is due largely to an inhibition of plasma membrane calcium influx, but this drug also inhibits the activity of protein kinase C directly.[Abstract] [Full Text] [Related] [New Search]