These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Noncaloric monosaccharides induce excessive sprouting angiogenesis in zebrafish via foxo1a-marcksl1a signal. Author: Wang X, Zhao J, Xu J, Li B, Liu X, Xie G, Duan X, Liu D. Journal: Elife; 2024 Oct 04; 13():. PubMed ID: 39365738. Abstract: Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms. Consuming too much sugar can damage blood vessels and contribute to diseases like diabetes and heart disease. Artificial sweeteners have been suggested as a healthier alternative, and are now included in many products like sodas and baked goods. However, some studies have suggested that people who consume large amounts of artificial sweeteners also have an increased risk of cardiovascular disease. Others suggest individuals may also experience spikes in blood sugar levels similar to those observed in people with diabetes. Yet few studies have examined how artificial sweeteners affect the network of vessels that transport blood and other substances around the body. To investigate this question, Wang, Zhao, Xu, et al. studied zebrafish embryos which had been exposed to sugar and a type of artificial sweetener known as non-caloric monosaccharides. Various imaging tools revealed that high levels of sugar caused the embryos to produce more new blood vessels via a process called angiogenesis. This excessive growth of blood vessels has previously been linked to diabetic complications, including cardiovascular disease. Wang, Zhao, Xu, et al. found that zebrafish embryos exposed to several different non-caloric monosaccharides developed similar blood vessel problems. All the sweeteners tested caused immature cells lining the blood vessels to develop into active tip cells that promote angiogenesis. This led to more new blood vessels forming that branch off already existing veins and arteries. These findings suggest that artificial sweeteners may cause the same kind of damage to blood vessels as sugar. This may explain why people who consume a lot of artificial sweeteners are at risk of developing heart disease and high blood sugar levels. Future studies could help scientists learn more about how genetics or other factors affect the health impact of sugars and artificial sweeteners. This may lead to a greater understanding of the long-term health effects of artificially sweetened foods.[Abstract] [Full Text] [Related] [New Search]