These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intertwined Flexoelectricity and Stacking Ferroelectricity in Marginally Twisted hBN Moiré Superlattice. Author: Wan S, Huang H, Liu H, Liu H, Li Z, Li Y, Liao Z, Lanza M, Zeng H, Zhou Y. Journal: Adv Mater; 2024 Nov; 36(47):e2410563. PubMed ID: 39367559. Abstract: Moiré superlattices in twisted van der Waals homo/heterostructures present a fascinating interplay between electronic and atomic structures, with potential applications in electronic and optoelectronic devices. Flexoelectricity, an electromechanical coupling between electric polarization and strain gradient, is intrinsic to these superlattices because of the lattice misfit strain at the atomic scale. However, due to its weak magnitude, the effect of flexoelectricity on moiré ferroelectricity has remained underexplored. Here, the role of flexoelectricity in shaping and modulating the moiré ferroelectric patterns in twisted hBN homojunction is unveiled. Enhanced flexoelectric effects induce unique stacking ferroelectric domains with hollow triangular structures. Interlayer bubbles influence domain shape and periodicity through local electric field modulation, and tip-stress enables the reversible manipulation of domain area and polarization direction. These findings highlight the impact of flexoelectric effects on moiré ferroelectricity, offering a new tuning knob for its manipulation.[Abstract] [Full Text] [Related] [New Search]