These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of dynamic high-pressure microfluidization treatment on the structural, physicochemical, and digestive properties of wheat starch-Lonicera caerulea berry polyphenol complex. Author: Li Y, Sun Y, Shi P, Liu C, Guo J, Liu S. Journal: Int J Biol Macromol; 2024 Nov; 281(Pt 1):136150. PubMed ID: 39369493. Abstract: Polyphenol complexes can improve the physicochemical and functional properties of starch. In this study, a wheat starch-Lonicera caerulea berry polyphenol complex (WS-LCBP) was prepared using dynamic high-pressure microfluidization (DHPM). The effects of different DHPM pressures (150 and 250 MPa), number of cycles (1 and 3), and LCBP content (0 %, 6 %, 8 %, and 10 %) on the multiscale structure, physicochemical properties, and in vitro digestibility of WS-LCBP were examined. After a single 250 MPa DHPM cycle, Average particle size and water separation rate of WS were reduced by 42.40 % and 16.67 %, the freeze-thaw stability was significantly improved (P < 0.05), and the resistant starch (RS) content 68.67 % was significantly increased (P < 0.05). WS-LCBP has a V-shaped starch structure, which hinders gelatinization and increases enthalpy. The RS content of the WS-LCBP ranged from 72.46 % to 89.09 %, which was significantly higher (P < 0.05) than that of wheat starch subjected to a single 150 MPa DHPM cycle (36.31 %). Three 250 MPa DHPM cycles were beneficial for the formation of WS-LCBP. However, excessive DHPM treatment pressure and frequency reduced the recombination rate of LCBP and wheat starch. This study provides reference data for the industrial production of nutritionally functional wheat-resistant starch using green technologies.[Abstract] [Full Text] [Related] [New Search]