These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The pro-apoptotic function of the C. elegans BCL-2 homolog CED-9 requires interaction with the APAF-1 homolog CED-4.
    Author: Tucker N, Reddien P, Hersh B, Lee D, Liu MHX, Horvitz HR.
    Journal: Sci Adv; 2024 Oct 11; 10(41):eadn0325. PubMed ID: 39383227.
    Abstract:
    In Caenorhabditis elegans, apoptosis is inhibited by the BCL-2 homolog CED-9. Although canonically anti-apoptotic, CED-9 has a poorly understood pro-apoptotic function. CED-9 is thought to inhibit apoptosis by binding to and inhibiting the pro-apoptotic C. elegans APAF-1 homolog CED-4. We show that CED-9 or CED-4 mutations located in their CED-9-CED-4 binding regions reduce apoptosis without affecting the CED-9 anti-apoptotic function. These mutant CED-9 and CED-4 proteins are defective in a CED-9-CED-4 interaction in vitro and in vivo, revealing that the known CED-9-CED-4 interaction is required for the pro-apoptotic but not for the anti-apoptotic function of CED-9. The pro-apoptotic CED-9-CED-4 interaction occurs at mitochondria. In mammals, BCL-2 family members can activate APAF-1 via cytochrome c release from mitochondria. The conserved role of mitochondria in CED-9/BCL-2-dependent CED-4/APAF-1 activation is notable and suggests that understanding how CED-9 promotes apoptosis in C. elegans could inform the understanding of mammalian apoptosis and how disruptions of apoptosis promote certain human disorders.
    [Abstract] [Full Text] [Related] [New Search]