These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The impact of lethal and sub-lethal exposure of emamectin benzoate on populations of Spodoptera litura (Lepidoptera: Noctuidae) under laboratory conditions. Author: Devi M, Mahajan A, Saini HS, Kaur S. Journal: Toxicon; 2024 Nov 06; 250():108121. PubMed ID: 39389208. Abstract: Emamectin benzoate is an avermectin bio-insecticide commonly used for managing several insect pests including Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), a major polyphagous pest of many cultivated crops. The current study was conducted to evaluate the effects of emamectin benzoate on the fitness of S. litura populations exhibiting differential susceptibility to insecticide. The selection process and all the bioassays were carried out using 6-day-old 2nd instar larvae of S. litura. A field-collected population of S. litura was divided into two groups: one selected with emamectin benzoate for eight generations (EB-Sel) and the other kept unexposed (Unsel-Lab) to insecticide in the laboratory. An increase in resistance ratio from 1.71-fold in the F1 generation to 22.54-fold in the F8 generation of the EB-Sel population was observed compared to the Unsel-Lab (F8) population. The EB-Sel and Unsel-Lab populations were treated with their respective lethal and sub-lethal concentrations which resulted in an extended development period, decreased larval survival, and adult emergence along with increased morphological abnormalities in adults. Significant reductions were observed in both male and female longevity, fecundity, egg hatching, net reproductive rate (R0), intrinsic rate of increase (rm), and finite rate of increase (λ) in EB-Sel and Unsel-Lab populations. Higher concentrations of the insecticide also reduced the relative fitness (Rf) of S. litura larvae, with maximum effect at LC50 of the EB-Sel population where the Rf value was 0.32 compared to the Unsel-Lab population. Both populations have been affected by emamectin benzoate exposure, however, the impact was more pronounced in the EB-Sel population indicating fitness costs. Our results suggested the fitness cost linked to emamectin benzoate resistance in S. litura which might favor managing insecticide resistance by reducing the frequency of resistant alleles by removing selection pressure. Consequently, our research provides significant insights to devise better pest management strategies for S. litura.[Abstract] [Full Text] [Related] [New Search]