These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Incorporation of laser-induced graphene with hierarchical NiCo layered double hydroxide nanosheets for electrochemical determination of glucose in food and serum.
    Author: Huang M, Ye L, Yu L, Zhang Y, Zeng T, Yang J, Tian F, Wu Z, Zhang X, Hu C, Yang N.
    Journal: Anal Chim Acta; 2024 Nov 15; 1329():343194. PubMed ID: 39396284.
    Abstract:
    Dependable and sensitive glucose (Glu) testing in foodstuff and blood serum is highly desirable to prevent and treat diabetes. Electrochemical quantification of Glu has attracted great interests due to the advantages, including simple operation, higher sensitivity, easy miniaturization, ease of on-site and wearable detection as well as fast response. High costs and environmental dependence of enzymes pose a challenge to the electrochemical enzymatic biosensors. Nonenzymatic electrochemical Glu sensors are urgently needed to aid the Glu detection in human serum and food samples. To fabricate flexible Glu electrochemical sensors, designing suitable electrode substrate and efficient electrocatalyst is of paramount significance. Herein, the porous patterned laser-induced graphene (LIG) was fabricated on polyimide substrates through an efficient laser-inducing technology, and then used directly as the electrode substrate. Electrochemical deposition of NiCo layered double hydroxide (LDH) nanoflakes on the LIG surface was then conducted to achieve NiCo-LDH/LIG electrode as a Glu sensor. Under optimal conditions, this sensor displays a low detection limit of 0.05 μM. Two sets of broad detection linear ranges were found to be from 0.5 to 270 μM and from 0.27 to 3.6 mM, with high sensitivities of 9.750 μA μM-1 cm-2 and 3.760 μA μM-1 cm-2, respectively. The enhanced performance was ascribed to the cooperative action of NiCo-LDH and LIG, in which porous LIG provides extraordinary electroconductibility and a high surface area, while NiCo-LDH offers numerous exposed active sites and outstanding electrocatalytic performance. Practical application was further verified during the Glu detection in human serum and food samples. This research confirms that the NiCo-LDH/LIG composite is a prospective electrode for high-performance Glu sensor and provides a way of developing nonenzymatic electrochemical sensors to analyze the Glu in human serum and food samples, opening new avenues in electrochemical sensing.
    [Abstract] [Full Text] [Related] [New Search]