These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Controlled Fabrication of Wafer-Scale, Flexible Ag-TiO2 Nanoparticle-Film Hybrid Surface-Enhanced Raman Scattering Substrates for Sub-Micrometer Plastics Detection.
    Author: Kong F, Ji C, Zhao G, Zhang L, Hao Z, Wang H, Dai J, Huang H, Pan L, Li D.
    Journal: Nanomaterials (Basel); 2024 Oct 03; 14(19):. PubMed ID: 39404325.
    Abstract:
    As an important trace molecular detection technique, surface-enhanced Raman scattering (SERS) has been extensively investigated, while the realization of simple, low-cost, and controllable fabrication of wafer-scale, flexible SERS-active substrates remains challenging. Here, we report a facile, low-cost strategy for fabricating wafer-scale SERS substrates based on Ag-TiO2 nanoparticle-film hybrids by combining dip-coating and UV light array photo-deposition. The results show that a centimeter-scale Ag nanoparticle (AgNP) film (~20 cm × 20 cm) could be uniformly photo-deposited on both non-flexible and flexible TiO2 substrates, with a relative standard deviation in particle size of only 5.63%. The large-scale AgNP/TiO2 hybrids working as SERS substrates show high sensitivity and good uniformity at both the micron and wafer levels, as evidenced by scanning electron microscopy and Raman measurements. In situ bending and tensile experiments demonstrate that the as-prepared flexible AgNP/TiO2 SERS substrate is mechanically robust, exhibiting stable SERS activity even in a large bending state as well as after more than 200 tensile cycles. Moreover, the flexible AgNP/TiO2 SERS substrates show excellent performance in detecting sub-micrometer-sized plastics (≤1 μm) and low-concentration organic pollutants on complex surfaces. Overall, this study provides a simple path toward wafer-scale, flexible SERS substrate fabrication, which is a big step for practical applications of the SERS technique.
    [Abstract] [Full Text] [Related] [New Search]