These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Single-vesicle imaging reveals actin-dependent spatial restriction of vesicles at the active zone, essential for sustained transmission.
    Author: Miki T, Okamoto Y, Ueno-Umegai M, Toyofuku R, Hattori S, Sakaba T.
    Journal: Proc Natl Acad Sci U S A; 2024 Oct 22; 121(43):e2402152121. PubMed ID: 39405348.
    Abstract:
    Synaptic-vesicle (SV) recruitment is thought to maintain reliable neurotransmitter release during high-frequency signaling. However, the mechanism underlying the SV reloading for sustained neurotransmission at central synapses remains unknown. To elucidate this, we performed direct observations of SV reloading and mobility at a single-vesicle level near the plasma membrane in cerebellar mossy fiber terminals using total internal reflection fluorescence microscopy, together with simultaneous recordings of membrane fusion by capacitance measurements. We found that actin disruption abolished the rapid SV recruitment and reduced sustained release. In contrast, induction of actin polymerization and stabilization did not affect vesicle recruitment and release, suggesting that the presence of actin filaments, rather than actin dynamics, was required for the rapid recruitment. Single-particle tracking experiments of quantum dot-labeled vesicles, which allows nanoscale resolution of vesicle mobility, revealed that actin disruption caused vesicles to diffuse more rapidly. Hidden Markov modeling with Bayesian inference revealed that SVs had two diffusion states under normal conditions: free-diffusing and trapped. After disruption of the actin filament, vesicles tended to have only the free-diffusing state. F-actin staining showed that actin filaments were localized outside the active zones (AZs) and surrounded some SV trajectories. Perturbation of SV mobility, possibly through interference with biomolecular condensates, also suggested that the restricted diffusion state determined the rate of SV recruitment. We propose that actin filaments confined SVs near the AZ to achieve rapid and efficient recruitment followed by priming and sustained synaptic transmission.
    [Abstract] [Full Text] [Related] [New Search]