These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gold/DNA-Cu2+ Complex Nanozyme-Based Aptamer Lateral Flow Assay for Highly Sensitive Detection of Kanamycin.
    Author: Li X, Chang R, Tai S, Mao M, Peng C.
    Journal: Molecules; 2024 Sep 26; 29(19):. PubMed ID: 39407498.
    Abstract:
    Aptamer-based lateral flow analysis (Apt-LFAs) has promising applications in many fields. Nanozymes have demonstrated high potential in improving the performance of Apt-LFAs and have been increasingly utilized in recent studies. In this study, we developed a nanozyme-based Apt-LFA for the rapid and sensitive detection of kanamycin by using a novel dual-functionalized AuNPs@polyA-DNA/GpG-Cu2+ nanozyme as a nanoprobe. In the nanoprobe design, the polyA-cDNA strand can discriminate a kanamycin aptamer from the kanamycin/aptamer complex, and the GpG-Cu2+ complex can amplify the detection signal by catalyzing the chromogenic reaction. The nanozyme Apt-LFA can quantify kanamycin in the range of 1-250 ng/mL with an LOD of 0.08 ng/mL, which demonstrated a 4-fold sensitivity improvement and had a wider linear range than the conventional AuNP-based LFA. The Apt-LFA was successfully applied to the detection of kanamycin in honey with good recoveries. Our dual-functionalized AuNP nanoprobe is easily prepared and can be highly compatible with the conventional AuNP-DNA-based LFA platform; thus, it can be extended to the application of Apt-LFAs for other small molecules.
    [Abstract] [Full Text] [Related] [New Search]