These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nicotinamide Mononucleotide (NMN) Ameliorates Free Fatty Acid-Induced Pancreatic β-Cell Dysfunction via the NAD+/AMPK/SIRT1/HIF-1α Pathway.
    Author: Wang Y, Liu S, Ying L, Zhang K, Li H, Liang N, Xiao L, Luo G.
    Journal: Int J Mol Sci; 2024 Sep 30; 25(19):. PubMed ID: 39408861.
    Abstract:
    As the sole producers of insulin under physiological conditions, the normal functioning of pancreatic β cells is crucial for maintaining glucose homeostasis in the body. Due to the high oxygen and energy demands required for insulin secretion, hypoxia has been shown to play a critical role in pancreatic β-cell dysfunction. Lipid metabolism abnormalities, a common metabolic feature in type 2 diabetic patients, are often accompanied by tissue hypoxia caused by metabolic overload and lead to increased free fatty acid (FFA) levels. However, the specific mechanisms underlying FFA-induced β-cell dysfunction remain unclear. Nicotinamide mononucleotide (NMN), a naturally occurring bioactive nucleotide, has garnered significant attention in recent years for its effectiveness in replenishing NAD+ and alleviating various diseases. Nevertheless, studies exploring the mechanisms through which NMN influences β-cell dysfunction remain scarce. In this study, we established an in vitro β-cell dysfunction model by treating INS-1 cells with palmitate (PA), including control, PA-treated, and PA combined with NMN or activator/inhibitor groups. Compared to the control group, cells treated with PA alone showed significantly reduced insulin secretion capacity and decreased expression of proteins related to the NAD+/AMPK/SIRT1/HIF-1α pathway. In contrast, NMN supplementation significantly restored the expression of pathway-related proteins by activating NAD+ and effectively improved insulin secretion. Results obtained using HIF-1α and AMPK inhibitors/activators further supported these findings. In conclusion, our study demonstrates that NMN reversed the PA-induced downregulation of the NAD+/AMPK/SIRT1/HIF-1α pathway, thereby alleviating β-cell dysfunction. Our study investigated the mechanisms underlying PA-induced β-cell dysfunction, examined how NMN mitigates this dysfunction and offered new insights into the therapeutic potential of NMN for treating β-cell dysfunction and T2DM.
    [Abstract] [Full Text] [Related] [New Search]