These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficient Photosynthesis of Value-Added Chemicals by Electrocarboxylation of Bromobenzene with CO2 Using a Solar Energy Conversion Device.
    Author: Zhang Y, Gao C, Ren H, Luo P, Wan Q, Zhou H, Chen B, Zhang X.
    Journal: Int J Mol Sci; 2024 Oct 01; 25(19):. PubMed ID: 39408936.
    Abstract:
    Solar-driven CO2 conversion into high-value-added chemicals, powered by photovoltaics, is a promising technology for alleviating the global energy crisis and achieving carbon neutrality. However, most of these endeavors focus on CO2 electroreduction to small-molecule fuels such as CO and ethanol. In this paper, inspired by the photosynthesis of green plants and artificial photosynthesis for the electroreduction of CO2 into value-added fuel, CO2 artificial photosynthesis for the electrocarboxylation of bromobenzene (BB) with CO2 to generate the value-added carboxylation product methyl benzoate (MB) is demonstrated. Using two series-connected dye-sensitized photovoltaics and high-performance catalyst Ag electrodes, our artificial photosynthesis system achieves a 61.1% Faraday efficiency (FE) for carboxylation product MB and stability of the whole artificial photosynthesis for up to 4 h. In addition, this work provides a promising approach for the artificial photosynthesis of CO2 electrocarboxylation into high-value chemicals using renewable energy sources.
    [Abstract] [Full Text] [Related] [New Search]