These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Apolipoprotein E is the determinant that mediates the receptor uptake of beta-very low density lipoproteins by mouse macrophages.
    Author: Innerarity TL, Arnold KS, Weisgraber KH, Mahley RW.
    Journal: Arteriosclerosis; 1986; 6(1):114-22. PubMed ID: 3942555.
    Abstract:
    Beta very low density lipoproteins (beta-VLDL) from cholesterol-fed animals from patients with Type III hyperlipoproteinemia are internalized by a receptor-mediated process in mouse macrophages. Once internalized, the cholesteryl esters of beta-VLDL are hydrolyzed in lysosomes, and the released cholesterol is re-esterified, resulting in a massive accumulation of cholesteryl esters. In the present study, competitive binding experiments demonstrated that canine apo E HDLc (lipoproteins that contain almost exclusively apolipoprotein E) inhibited the receptor-mediated uptake of 125I-beta-VLDL. The incorporation of human apo E into beta-VLDL was also shown to modulate binding. Reductively methylated beta-VLDL (methyl beta-VLDL) were not taken up by macrophages and did not stimulate cholesteryl ester synthesis. When unmodified human apo E-3 was incorporated into the lipoprotein in place of the canine methyl apo E, these hybrid beta-VLDL (methyl beta-VLDL [E-3]) were internalized and degraded and were as effective as native beta-VLDL in stimulating cholesteryl ester synthesis in macrophages. In the reverse experiment, the incorporation of methyl apo E-3 into native canine beta-VLDL (beta-VLDL [methyl E-3]) reduced the binding activity of the beta-VLDL and abolished their ability to stimulate cellular cholesteryl ester synthesis. Canine beta-VLDL into which apo E-2(Arg158----Cys) had been incorporated had less ability to stimulate cholesteryl ester synthesis (20%) than did native beta-VLDL, but they were more active than beta-VLDL [methyl E-2] or beta-VLDL [methyl E-3], which had virtually no activity. These results demonstrate that apo E is the determinant mediating the receptor binding and uptake of beta-VLDL by mouse macrophages.
    [Abstract] [Full Text] [Related] [New Search]