These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of activity of human alkaline phosphatases by Mg2+ and thiol compounds.
    Author: Navaratnam N, Stinson RA.
    Journal: Biochim Biophys Acta; 1986 Jan 17; 869(1):99-105. PubMed ID: 3942754.
    Abstract:
    Interaction of purified human liver and placental alkaline phosphatases (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) with sulfhydryl groups, sulfhydryl reagents, and Mg2+ were studied. L-Cysteine (0.1 mmol/l) or Mg2+ activated the liver enzyme 4-5-fold and the placental enzyme 2-3-fold, with optimal pH 7.5-8.0; these activations were not additive. L-Cysteine (2 mmol/l) inhibited both enzymes maximally at pH greater than 9.0; phosphate protected the enzymes. S-Methylcysteine had little effect, with or without Mg2+. Inhibition by sulfur-containing compounds paralleled their ability to bind Zn2+. Fluoresceine mercury acetate (specific for sulfhydryl groups) inhibited the isoenzymes, whereas iodoacetic acid, iodoacetamide, dithionitrobenzoic acid, and p-chloromercuribenzoate had little effect. The inhibition was reversed by L-cysteine and only slightly protected by inorganic phosphate. Thus, there are two sites on human liver and placental alkaline phosphatase that interact with L-cysteine; a Mg2+-binding site, which results in activation, and a site that involves one or both of the bound Zn2+ ions and results in inactivation. Both enzymes have a protected essential thiol group.
    [Abstract] [Full Text] [Related] [New Search]