These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: New mitochondrial gene order arrangements and evolutionary implications in the class Octocorallia. Author: Poliseno A, Quattrini AM, Lau YW, Pirro S, Reimer JD, McFadden CS. Journal: Mitochondrial DNA A DNA Mapp Seq Anal; 2024 Oct 21; ():1-11. PubMed ID: 39431478. Abstract: The complete mitochondrial genomes of octocorals typically range from 18.5 kb to 20.5 kb in length and include 14 protein-coding genes (PCGs), two ribosomal RNA genes and one tRNA. To date, seven different gene orders (A-G) have been described, yet comprehensive investigations of the actual number of arrangements, as well as comparative analyses and evolutionary reconstructions of mitochondrial genome evolution within the whole class Octocorallia, have been often overlooked. Here, we considered the complete mitochondrial genomes available for octocorals and explored their structure and gene order variability. Our results updated the actual number of mitochondrial gene order arrangements so far known for octocorals from 7 to 14 and allowed us to explore and preliminarily discuss the role of some of the structural and functional factors in the mitogenomes. We performed comparative mitogenomic analyses on the existing and novel octocoral gene orders, considering different mitogenomic structural features such as genome size, GC percentage, AT and GC skewness. The mitochondrial gene order history mapped on a recently published nuclear loci phylogeny showed that the most common rearrangement events in octocorals are inversions, inverted transpositions and transpositions. Furthermore, gene order rearrangement events were restricted only to some regions of the tree. Overall, different rearrangement events arose independently and from the ancestral and most common gene order, instead of being derived from other rearranged orders. Finally, our data demonstrate how the study of mitochondrial gene orders can be used to explore the evolution of octocorals and in some cases can be used to assess the phylogenetic placement of certain taxa.[Abstract] [Full Text] [Related] [New Search]