These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biphasic Ca2+ response of adenylate cyclase. The role of calmodulin in its activation by Ca2+ ions.
    Author: Resink TJ, Stucki S, Grigorian GY, Zschauer A, Bühler FR.
    Journal: Eur J Biochem; 1986 Jan 15; 154(2):451-6. PubMed ID: 3943538.
    Abstract:
    The Ca2+-dependent regulation of human platelet membrane adenylate cyclase has been studied. This enzyme exhibited a biphasic response to Ca2+ within a narrow range of Ca2+ concentrations (0.1-1.0 microM). At low Ca2+ (0.08-0.3 microM) adenylate cyclase was stimulated (Ka = 0.10 microM), whereas at higher Ca2+ (greater than 0.3 microM) the enzyme was inhibited to 70-80% control (Ki = 0.8 microM). Membrane fractions, prepared by washing in the presence of LaCl3 to remove endogenous calmodulin (approximately equal to 70-80% depletion), exhibited no stimulation of adenylate cyclase by Ca2+ but did show the inhibitory phase (Ki = 0.4 microM). The activation phase could be restored to La3+-washed membranes by addition of calmodulin (Ka = 3.0 nM). Under these conditions it was apparent that calmodulin reduced the sensitivity of adenylate cyclase to Ca2+ (Ki = 0.8 microM). Prostaglandin E1 (PGE1) did not alter Ki or Ka values for Ca2+. Calmodulin did not alter the EC50 for PGE1 stimulation of adenylate cyclase but increased the Vmax (1.5-fold). The calmodulin antagonist trifluoperazine potently inhibited adenylate cyclase in native membranes (80%) and to a much lesser extent in La3+-washed membranes (15%). This inhibition was due to interaction of trifluoperazine with endogenous calmodulin since trifluoperazine competitively antagonized the stimulatory effect of calmodulin on adenylate cyclase in La3+-washed membranes. We propose that biphasic Ca2+ regulation of platelet adenylate cyclase functions to both dampen (low Ca2+) and facilitate (high Ca2+) the haemostatic function of platelets.
    [Abstract] [Full Text] [Related] [New Search]