These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cytosol-stimulated remodeling of phosphatidylcholine in rat lung microsomes. Author: Nijssen JG, van den Bosch H. Journal: Biochim Biophys Acta; 1986 Feb 28; 875(3):450-7. PubMed ID: 3947653. Abstract: When 600 X g supernatants of 10% (w/v) rat lung homogenates were incubated with CDP[Me-14C]choline both saturated and unsaturated species of phosphatidylcholine were formed from endogenous diacylglycerols. The percentage radioactivity in the disaturated species of total phosphatidylcholine increased with time from 12% after 5 min to 30% after 60 min incubation. In similar experiments with 20 000 X g supernatants, the increase in the disaturated species of microsomal phosphatidylcholine was from 25 to 37% over the same time period. In incubations of isolated microsomes in buffer, the percent of 14C label in disaturated phosphatidylcholine remained constant at a level of 25%. To investigate a possible role of cytosolic factor(s) in the increase in the percentage of disaturated phosphatidylcholine with time, microsomes were prelabeled by incubation in buffer with CDP[Me-14C]choline to give a fixed ratio of radioactive saturated and unsaturated phosphatidylcholine species. When the reisolated microsomes were incubated in buffer, the distribution of radioactivity over saturated and unsaturated species remained constant. In contrast, incubation of prelabeled microsomes in the presence of cytosol caused an increase in the percent radioactivity in saturated phosphatidylcholines from a starting value of 18 to 30% after 60 min incubation, while leaving total phosphatidylcholine radioactivity unaffected. These results indicate a remodeling of phosphatidylcholine under the influence of a cytosolic factor(s). Evidence is presented that suggests that Ca2+-independent-cytosolic phospholipase A2 activity as well as a microsomal ATP-independent CoA-mediated acyltransferase activity might contribute to this remodeling. The cytosol donates the necessary CoA for this acyl transfer as well as saturated acyl-CoA for the reacylation of lysophosphatidylcholine.[Abstract] [Full Text] [Related] [New Search]