These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Propolis-loaded photocurable methacrylated pullulan films: Evaluation of mechanical, antibacterial, biocompatibility, wound healing and pro-angiogenic abilities.
    Author: Bal-Öztürk A, Torkay G, İdil N, Akar RO, Özbaş Z, Özkahraman B.
    Journal: Int J Biol Macromol; 2024 Dec; 282(Pt 4):137071. PubMed ID: 39486734.
    Abstract:
    The ultimate goal of this study was to establish the groundwork for the development of high-mechanical pullulan based films for wound healing applications. For this purpose, pullulan (PUL) was successfully methacrylated with different methacrylic anhydride amounts and used for the fabrication of photocurable wound dressing films (PULMA). The mechanical properties of the films, evaluated by changing the methacrylation degree and polymer concentration for better mechanical performance, indicated the best results in terms of elastic modulus (2.55 ± 0.15 MPa), tensile strength (2.48 ± 0.12 MPa), and elongation at break (848 ± 111 %). Additionally, the incorporation of PRO into wound dressing films has demonstrated strong antibacterial activity against Escherichia coli and Staphylococcus aureus, and it has also improved the release profile. The obtained films have scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH). The wound dressing films were not cytotoxic to NIH/3T3 cells, a fibroblast cell line, according to the cytotoxicity assay. The in vitro scratch test showed that PRO incorporated films induced cell migration, suggesting that they have the potential to close wounds and promote healing. According to the image analysis conducted following the in ovo chorioallantoic membrane (CAM) test, PRO inclusion boosted different angiogenesis parameters stemming from the films. Clear evidence has been found that PRO loaded into high mechanical performance PUL based films can be suitable for advanced wound dressing applications.
    [Abstract] [Full Text] [Related] [New Search]